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A new approach to the statistical estimation of age-period-cohort
(APC) accounting models, called the intrinsic estimator (IE), recently
has been developed. This article (1) further describes the IE alge-
braically, geometrically, and verbally, (2) reviews properties of the
IE as a statistical estimator, (3) provides model validation evidence
for the IE both from an empirical example and from a simulation
exercise, (4) relates the coefficients of the IE to those of conventional
constrained APC models using formal definitions of statistical es-
timability, hypothesis testing, and empirical applications that di-
rectly address a criticism that often has been lodged at general-
purpose methods of APC analysis, and (5) introduces computer
software for application of the IE that interested users can readily
access. The authors conclude that the IE holds the potential for
applications not only to APC analysis but also to similar problems
of structural underidentification in sociology.

INTRODUCTION

Age-period-cohort (APC) analysis has played a critical role in studying
time-specific phenomena in sociology, demography, and epidemiology for
the past 80 years (Mason and Wolfinger 2002). Broadly defined, APC
analysis distinguishes three types of time-related variation in the phe-
nomena of interest: age effects, or variation associated with different age
groups; period effects, or variation over time periods that affect all age
groups simultaneously; and cohort effects, or changes across groups of
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individuals who experience an initial event such as birth in the same year
or years. These distinctions have important implications for measurement
and analysis. The considerable regularity of age variations in many social
outcomes across time and place reflects the developmental nature of true
age changes. In contrast, period and cohort effects reflect the influences
of social forces. Period variations often result from shifts in social, his-
torical, and cultural environments. Cohort variations are conceived as the
essence of social change and may reflect the effects of early life exposure
to socioeconomic, behavioral, and environmental factors that act persis-
tently over time to produce differences in life course outcomes for specific
cohorts (Ryder 1965).

The APC accounting/multiple classification model was introduced to
sociologists by Mason, Mason, Winsborough, and Poole (1973) and serves
as a general methodology for cohort analysis when age, period, and cohort
are all potentially of interest. This general methodology focuses on the
APC analysis of data in the form of tables of percentages or occurrence/
exposure rates of events such as births, deaths, disease incidence, and
crimes. In spite of its theoretical merits and conceptual relevance, APC
analysis of tabulated data suffers from the “identification problem” in-
duced by the exact linear dependency between age, period, and (birth)
cohort: period p age � cohort. This can be viewed as a special case of
collinear regressors that produces, in this instance, a singular matrix (of
one less than full rank) used in the statistical estimation process. Since a
singular matrix produces multiple estimators of the three effects, it is
difficult to estimate the unique set of true separate effects.

A number of methodological contributions to the specification and es-
timation of APC models have occurred in recent decades in a wide variety
of disciplines, including social and demographic research (e.g., Glenn 1976;
Fienberg and Mason 1978, 1985; Hobcraft, Menken, and Preston 1982;
Wilmoth 1990; O’Brien 2000) and biostatistics and epidemiology (e.g.,
Osmond and Gardner 1982; Clayton and Schifflers 1987; Holford 1992;
Tarone and Chu 1992; Robertson and Boyle 1998; Fu 2000). Various
analytic approaches have produced ambiguous and inconsistent results.
Researchers do not agree on methodological solutions to these problems
and conclude that APC analysis is still in its infancy (Kupper et al. 1985;
Mason and Wolfinger 2002).

Recent developments in APC methodology in biostatistics have em-
phasized the utility of estimable functions that are invariant to the se-
lection of constraints on the parameters (Holford 1983, 1991, 1992; Kupper
et al. 1983; Kupper et al. 1985; Clayton and Schifflers 1987; Robertson,
Gandini, and Boyle 1999). This is the approach applied by Fu (2000) in
the derivation of a new APC estimator—termed the intrinsic estimator
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(IE)—based on estimable functions and the singular value decomposition
of matrices.

In earlier work (Yang, Fu, and Land 2004), we compared two ap-
proaches to the identification problem in APC accounting models: the IE
method and the constrained generalized linear models (CGLIM) estimator
that has been conventional among demographers and other social sci-
entists for more than two decades (Fienberg and Mason 1978, 1985; Mason
and Smith 1985). Through data analyses of population mortality rates,
we illustrated some similarities and differences of these two methods in
parameter estimates and model fit. We also discussed some key statistical
properties of the IE compared with the CGLIM estimator.

From these results, we concluded that the IE offers a useful alternative
to conventional methods for the APC analysis of tables of rates. The
conceptual foundations of the IE are sufficiently abstract and difficult to
understand, however, that additional exposition and illustration are mer-
ited. Accordingly, the objectives of this article are to (1) further describe
the IE algebraically, geometrically, and verbally, (2) review properties of
the IE as a statistical estimator, (3) report results of model validation
assessments of the IE from both an empirical example and a simulation
exercise, (4) give some usage advice and show how to relate the coefficients
of the IE to those of conventional constrained APC models with appli-
cations to U.S. female mortality rates, 1960–99, and (5) introduce computer
software that interested users can readily access.

Since the IE is a general-purpose method of APC analysis with poten-
tially wide applicability in the social sciences, it is appropriate to recall
the criteria for acceptability of such a general-purpose method, recently
articulated by Norval Glenn, a long-time critic of attempts to provide
general solutions to the APC analysis problem. Glenn (2005, p. 20) stated
that such a method “may prove to be useful . . . if it yields approximately
correct estimates ‘more often than not,’ if researchers carefully assess the
credibility of the estimates by using theory and side information, and if
they keep their conclusions about the effects tentative.” These are strong
criteria with which we agree. The purpose of this article is to assess the
extent to which the IE satisfies them.

THE ALGEBRA OF THE APC IDENTIFICATION PROBLEM

We focus on the APC analysis of rectangular arrays of demographic rates
arranged in conventional fashion, with age intervals defining the rows
and time periods defining the columns. Specifically, in table 1 we analyze
the same U.S. female mortality rates from 1960 through 1999 that we
have previously studied (Yang et al. 2004). The data from which this table
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TABLE 1
Deaths per 100,000: U.S. Females, 1960–99

Age 1960–64 1965–69 1970–74 1975–79 1980–84 1985–89 1990–94 1995–99

0 . . . . . . 518 444 371 309 259 227 192 160
5 . . . . . . 39 36 34 27 23 20 18 16
10 . . . . . 31 30 29 25 22 20 19 18
15 . . . . . 53 58 60 54 48 48 46 43
20 . . . . . 70 73 72 64 57 54 51 48
25 . . . . . 88 86 82 70 64 64 64 59
30 . . . . . 123 123 113 90 80 83 86 82
35 . . . . . 183 185 172 135 115 113 119 119
40 . . . . . 275 282 267 221 186 170 166 170
45 . . . . . 419 422 405 344 304 277 261 252
50 . . . . . 631 625 591 524 483 454 419 395
55 . . . . . 906 905 868 770 741 711 671 631
60 . . . . . 1,414 1,337 1,282 1,156 1,126 1,111 1,053 1,014
65 . . . . . 2,228 2,120 1,967 1,740 1,686 1,656 1,590 1,543
70 . . . . . 3,608 3,400 3,112 2,698 2,606 2,563 2,445 2,428
75 . . . . . 5,886 5,593 5,143 4,380 4,087 3,996 3,796 3,778
80 . . . . . 9,678 9,162 8,395 7,337 6,946 6,641 6,302 6,351
85 . . . . . 15,665 14,993 13,757 12,016 11,487 11,223 10,444 10,934
90 . . . . . 23,635 22,839 21,261 18,991 18,253 18,361 17,395 17,666
95� . . . 33,478 32,491 31,170 28,986 28,613 29,536 28,973 29,796

was constructed were obtained from the Berkeley Human Mortality Da-
tabase (http://www.mortality.org). As is conventional in demographic and
epidemiological analyses of arrays of this type, both age and period are
measured in five-year intervals, and the diagonal elements of the matrices
correspond to birth cohorts.

For example, the death rate for the 35–39 age group recorded in 1960–
64 was 0.001835, or 183 deaths per 100,000 females in the population.
By comparison, the mortality rate for the same age group in 1995–99 was
119 per 100,000. The complication that arises from the APC analysis of
such arrays of rates is that the former rate ( ) also corresponds183/100,000
to the mortality rate of the cohort of U.S. females born in the years 1925–
29 and the latter rate ( ) also corresponds to the mortality rate119/100,000
for the birth cohort of the years 1960–64.

The APC accounting/multiple classification model (Mason et al. 1973)
is a conventional tool for the analysis of age-by-time-period arrays of
demographic rates. We have already described the algebraic structure of
this model (Yang et al. 2004) and, for the sake of expository completeness,
we repeat it here. For mortality rates, this model can be written in linear
regression form as

M p D /P p m � a � b � g � � , (1)ij ij ij i j k ij
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where Mij denotes the observed death rate for the ith age group for
age groups at the jth time period for timei p 1, . . . , a j p 1, . . . , p

periods of observed data; Dij denotes the number of deaths in the ijth
group; Pij denotes the size of the estimated population in the ijth group,
the population at risk of death; m denotes the intercept or adjusted mean
death rate; ai denotes the ith row age effect or the coefficient for the ith
age group; bj denotes the jth column period effect or the coefficient for
the jth time period; gk denotes the kth diagonal cohort effect or the co-
efficient for the kth cohort for cohorts, withk p 1, . . . , (a � p � 1)

; and �ij denotes a random error with expectation .k p a � i � j E(� ) p 0ij

Conventional APC models as represented in model (1) fall into the class
of generalized linear models (GLIM; see McCullagh and Nelder [1989] or
McCulloch and Searle [2001] for expositions) that can take various al-
ternative forms. First, model (1) can take a log-linear regression form, via
a log link, as

log (E ) p log (P ) � m � a � b � g , (2)ij ij i j k

where Eij denotes the expected number of deaths in cell (i, j) that is
assumed to be distributed as a Poisson variate, and is the log oflog (P )ij

the exposure Pij in model (1) and is called the “offset” or adjustment for
the log-linear contingency table model. Models of this type are widely
used in demography and epidemiology, where the counts of demographic
events such as deaths or the incidence of diseases generally follow Poisson
distributions and the rates are estimated through log-linear models
(Agresti 1996). A second alternative formulation of the model is to treat
the underlying number of deaths as a binomial variate. The canonical
link changes from a log link to a logit link, which yields a logistic model,

mij
v p log p m � a � b � g , (3)ij i j k( )1 � mij

where is the log odds of death and is the probability of death inv mij ij

cell (i, j). This model has been implemented more widely in demographic
research (e.g., Mason and Smith 1985).

Regression models (1), (2), and (3) can be treated as fixed-effects gen-
eralized linear models after a reparameterization to center the parameters:

a p b p g p 0. (4)� � �i j k
i j k
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After this reparameterization, model (1) can be written in the conven-
tional matrix form of a least squares regression:

Y p Xb � �, (5)

where Y is a vector of mortality rates or log-transformed rates, X is the
regression design matrix consisting of “dummy variable” column vectors
for the vector (of which representsm p 1 � [a � 1] � [p � 1] � [a � p � 2]
the dimension) of model parameters b:

Tb p (m, a , . . . , a , b , . . . , b , g , . . . , g ) . (6)1 a�1 1 p�1 1 a�p�2

The T superscript denotes vector transposition, and the � in model (5) is
a vector of random errors with mean 0. Note that the parameters aa, bp,
and are not included in the parameter vector b, because of thega�p�1

constraints in equation (4), and can be uniquely determined by use of (4)
in conjunction with each estimator of b. Later in this discussion, we will
illustrate by an empirical example that the use of reference categories is
equivalent to the translation by a constant of the parameter estimates
produced by the constraints in equation (4) and thus of no substantive
importance.

The ordinary least squares (OLS) estimator of the matrix regression
model (5) is the solution b of the normal equation:

T �1 Tb̂ p (X X) X Y. (7)

But this estimator does not exist—there is no uniquely defined vector of
coefficient estimates. This is because of the fact that the design matrix X
is singular with one less than full column rank (Kupper et al. 1985), on
account of the perfect linear relationship between the age, period, and
cohort effects:

period � age p cohort.

Therefore, (XTX)�1 does not exist. This is the model identification prob-
lem of APC analysis. It implies that there are an infinite number of possible
solutions of the matrix equation (7) (i.e., OLS estimators of model [5]),
one for each possible linear combination of column vectors that results
in a vector identical to one of the columns of X. Thus, it is not possible
to separately estimate the effects of cohort, age, and period without im-
posing at least one constraint on the coefficients in addition to the re-
parameterization in equation (4).

Since the work of Fienberg and Mason (1978, 1985), the conventional
approach to multiple-classification APC models in demography has been
a coefficients-constraints approach, which takes the form of placing (at
least) one additional identifying constraint on the parameter vector defined
in equation (6), namely, constraining the effect coefficients of the first two
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periods to be equal ( ). With this one additional constraint, theb p b1 2

model (5) is just-identified, the matrix (XTX) becomes nonsingular, and
the least squares estimator (eq. [7]) exists (as do related maximum like-
lihood estimators for models [1], [2], and [3]).2

The main problems with this CGLIM approach have been discussed
in a large body of methodological literature in demography, epidemiology,
and statistics. First, the analyst needs to rely on external or side infor-
mation to find constraints, but such information often does not exist or
cannot easily be verified (Mason and Wolfinger 2002). Second, different
choices of identifying constraints can produce widely different estimates
of patterns of change across the age, period, and cohort categories. As we
have previously demonstrated (Yang et al. 2004; see also, e.g., Mason and
Smith 1985), estimates of model effect coefficients are sensitive to the
choice of the equality coefficient constraint. Third, all just-identified mod-
els will produce the same levels of goodness of fit to the data, making
model fit a useless criterion for selecting the best-constrained model. But
no other criteria or guidelines have been proposed. These problems often
lead to the conclusion that it is impossible to obtain meaningful estimates
of the distinct effects of age, period, and cohort in analysis of social change.

DESCRIPTION OF THE IE

So what is new about the IE? The consensus has been that the key problem
for APC analysis is to identify an estimable function that uniquely de-
termines the parameter estimates. But there continues to be controversy
over whether there exists such an estimable function that solves the iden-
tification problem. The conventional wisdom is that only the nonlinear,
but not the linear, components of APC models can be estimable (Rodgers
1982a; Holford 1983). As noted in Fu (2008), however, there have been
only numeric demonstrations, but no rigorous proofs, to support the idea
that no estimable function exists. It should also be noted that Kupper et
al. (1985) provided a condition for estimable functions and suggested that
an estimable function satisfying this condition resolves the identification
problem. Subsequent publications have shown in that the IE satisfies this

2 There are other solutions to APC identification problems. The proxy variables ap-
proach uses one or more proxy variables as surrogates for the age, period, or cohort
coefficients (see, e.g., O’Brien 2000). The nonlinear parametric transformation approach
defines a nonlinear function of one of the age, period, or cohort variables so that its
relationship to others is nonlinear (see, e.g., Fienberg and Mason 1985; Yang and Land
2006). These approaches do not take the form of an APC accounting model and are
not directly comparable to the IE in statistical terms. As will be illustrated later,
however, comparison of results obtained by different approaches provides a means of
model validation.
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condition and estimates the unique estimable function, including both the
linear and nonlinear components of the parameter vector of the multiple
classification model (Fu 2000, 2008; Fu, Hall, and Rohan 2004; Yang et
al. 2004).

Within the context of the foregoing description of the algebra of the
APC identification problem in conventional linear regression models, we
next describe the IE in three ways: algebraically, geometrically, and
verbally.

Algebraic Definition

We have shown previously (Yang et al. 2004) that, because the design
matrix X is one less than full column rank, the parameter space of the
unconstrained APC regression model (5) can be decomposed into the direct
sum of two linear subspaces that are perpendicular to each other. One
subspace corresponds to the unique zero eigenvalue of the matrix XTX of
equation (7) and is of dimension 1; it is termed the null subspace of the
design matrix X. The other, non-null subspace is the complement subspace
orthogonal to the null space.

Because of this orthogonal decomposition of the parameter space, each
of the infinite number of solutions of the unconstrained APC accounting
model (5) can be written as

b̂ p B � sB , (8)0

where s is a scalar corresponding to a specific solution and B0 is a unique
eigenvector of Euclidean norm or length 1. The eigenvector B0 does not
depend on the observed rates Y, only on the design matrix X, and thus
is completely determined by the numbers of age groups and period
groups—regardless of the event rates. In other words, B0 has a specific
form that is a function of the design matrix. To construct an explicit
representation of B0, note first that the exact linear dependency between
the age, period, and cohort variables in model (5) is mathematically equiv-
alent to

XB p 0. (9)0

This equation expresses the property that X is singular; that is, there exists
a linear combination of the columns of the design matrix X that equals
a zero vector. Kupper et al. (1985) showed that B0 has the algebraic form

B̃0B p , (10)0 B̃k k0
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meaning that B0 is the normalized vector of :B̃0

TB̃ p (0, A, P, C) , (11)0

where ,a�1 a�1 p�1 p�1A p (1 � , . . . , [a � 1] � ) P p ( � 1, . . . , �2 2 2 2
, and with a, p, and c de-a�p a�p[p � 1]) C p (1 � , . . . , [a � p � 2] � ) ,2 2

noting the number of age categories, time periods, and cohorts in the age-
by-time-period array of rates. It is important to note that the vector B0

is fixed, or nonrandom, because it is a function solely of the dimension
of the design matrix X or the number of age groups (a) and periods (p).
The fact that the fixed vector B0 is independent of the response variable
Y suggests that it should not play any role in the estimation of effect
coefficients. But the conventional CGLIM approach violates this principle
if the scalar s in equation (8) is nonzero.

The idea that B0 should not affect the results is a key point, as intuition
suggests that the eigenvector corresponding to the zero eigenvalue should
be an arbitrary vector. And indeed, sB0 is arbitrary. But B0 is not arbitrary;
it is fixed by the design matrix. Furthermore, with equation (8), any APC
estimator obtained by placing any identifying constraint(s) on the design
matrix can be written as the linear combination B � sB0, where B is the
special estimator termed the IE that lies in the parameter subspace that
is orthogonal to the null space and determined by the Moore-Penrose
generalized inverse.3

One computational algorithm for the IE is a principal components
regression method, whereby the user (a) computes the eigenvalues and
eigenvectors (principal components) of the matrix XTX; (b) normalizes
them to have unit length; (c) identifies the eigenvector B0 corresponding
to the unique eigenvalue 0; (d) estimates a (principal components) re-
gression model with response vector Y as in model (5) and design matrix
U, whose column vectors are the principal components determined by
the eigenvectors of nonzero eigenvalues; and then (e) uses the orthonormal
matrix of all eigenvectors to transform the coefficients of the principal
components regression model to the regression coefficients of the intrinsic
estimator B.

Geometric Representation

The parameter space of the unconstrained vector b can be decomposed
into two parts that are orthogonal or independent in relation to each
other:

b p b � sB , (12)0 0

3 See, e.g., Searle (1971, pp. 16–19) for a definition of the Moore-Penrose generalized
inverse and its properties.
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where is a special parameter vector that is a linear functionb p P b0 proj

of b, corresponding to the projection of the unconstrained parameter vec-
tor b to the non-null space of X. Specifically, the special parameter vector
b0 corresponding to s p 0 satisfies the geometric projection

Tb p (I � B B )b. (13)0 0 0

This projection is illustrated in figure 1, which shows the projection of
two parameterizations, b1 and b2, onto the non-null parameter space (the
vertical axis in fig. 1), which is independent of the real number s. The
geometric representation in figure 1 can be thought of either as a simple
parameter space of dimension 2 or as multidimensional, with the vertical
axis representing a direction in a multidimensional non-null space. In
either case, since the projection of any parameterization of b in figure 1
yields the same parameter vector b0, the latter is estimable.4

Figure 1 also helps to illustrate geometrically that the IE may in fact
also be viewed as a constrained estimator. But, in contrast to the equality
constraints on two or more coefficients of the parameter vector b that are
imposed in conventional approaches to the estimation of APC accounting
models, the constraint imposed by the IE to identify model (5) is a con-
straint on the geometric orientation of the parameter vector b in parameter
space. Specifically, the IE imposes the constraint that the direction in
parameter space defined by the eigenvector B0 in the null space of the
design matrix X have zero influence on the parameter vector b0 (i.e., on
the specific parameterization of the vector b that is estimated by the IE).
Since B0 is a fixed vector that is a function solely of the design matrix
(e.g., the number of time periods of data in an analysis) and does not
depend on the observed event rates or frequencies being analyzed, this
seems to be a reasonable constraint.

Corresponding to the projection of the parameter vector b onto b0, we
have the following projection of the estimators of equation (13) onto the
IE B:

T ˆB p (I � B B )b. (14)0 0

This equation provides another algorithm for computing the IE, one that
computes an initial estimator of model (5), using, for instance, an equalityb̂
constraint on two of the age, period, or cohort parameters, and then
geometrically projects to the IE B by removing the component in theb̂
B0 direction.

4 Fig. 1 provides only a geometric illustration. Full algebraic details of the proof that
b0 is estimable and the only estimable function that determines both the linear and
nonlinear trends in the age, period, and cohort coefficients are given in Fu et al. (2004).
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Fig. 1.—Geometric projection of parameter vectors

Verbal Description

Statisticians have known since Kupper et al. (1985) that the dimension
of the design matrix (i.e., the numbers of age groups and time periods)
in the APC accounting model may affect the estimates obtained from
CGLIM estimators. Put in the simplest possible terms, the basic idea of
the IE is to remove the influence of the design matrix on coefficient
estimates. As noted later herein, this approach produces an estimator that
has desirable statistical properties.

The IE also can be viewed as a special form of principal components
regression estimator (for a standard exposition of principal components
regression, see, e.g., Sen and Srivastava [1990]) that removes the influence
of the null space of the design matrix X on the estimator. It specifically
estimates a constrained parameter vector b0 that is a linear function of
the parameter vector b of the unconstrained APC accounting model (5).
This constrained parameter vector b0 corresponds to the projection of the
unconstrained parameter vector b onto the non-null subspace of the design
matrix X.

Since the IE is a principal components estimator, one might well ask,
Why not just calculate the eigenvectors of the matrix XTX by application
of principal components, regress the observed rates on the subspace
spanned by these eigenvectors, and leave it at that? The answer is that
regression coefficient estimates in this subspace are not directly inter-
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pretable in terms of age, period, and cohort effects. Therefore, the IE uses
the extra step of inverse orthonormal transformation of the coefficient
estimates of the principal components regression back to the original space
of age, period, and cohort coordinates. The inverse transformation is what
makes the IE a special form of principal components estimator. It yields
coefficients, as will be illustrated by numerical example below, that are
directly interpretable as age, period, and cohort effects and that can be
compared to corresponding effects estimated by the conventional impo-
sition of equality constraints on parameters.

STATISTICAL PROPERTIES AND VALIDATION OF THE IE

Statistical Properties

Earlier, we (Yang et al. 2004) stated and proved some properties of the
IE as a statistical estimator that we briefly summarize here. For context,
consider first the analysis of an APC data set for a finite number of time
periods p. That is, suppose that an APC analysis is to be conducted for
a fixed matrix of observed rates or event counts. This implies that the
corresponding design matrix X is fixed (i.e., X has a fixed number of age
groups and time periods). The randomness in the error term � of model
(5) then corresponds to measurement errors in the rates or in the event
counts and/or to intrinsic randomness in the rates or counts.

In this context of an age-by-time-period table of population rates with
a fixed number of time periods p of data, it has been shown (Yang et al.
2004, p. 101) that the IE satisfies a condition for estimability of linear
functions of the parameter vector b that was established by Kupper et
al. (1985, app. B) and recently further elaborated by Fu (2008). Estimable
functions are invariant with respect to whatever solution (see eq. [7] above)
to the normal equations is obtained;5 these functions are desirable as
statistical estimators because they are linear functions of the unidentified
parameter vector that can be estimated without bias (i.e., they have un-
biased estimators).6 Specifically, the condition for estimability of a con-

5 See Searle (1971, pp. 180–88) or McCulloch and Searle (2001, pp. 120–21) for an
exposition of the concept of estimable functions.
6 In the history of discussions of the APC accounting model in sociology, Rodgers
(1982a) was early to argue that analysts should seek estimable functions of the uni-
dentified parameter vector (eq. [6]); see also the comment by Smith, Mason, and Fien-
berg (1982) and the response by Rodgers (1982b). In some respects, the IE can be
regarded as providing a practical, easily applicable method for producing estimates of
estimable functions from data in the form of age-by-time-period tables of rates, as
called for by Rodgers over two decades ago. The estimability referred to by Rodgers,
however, essentially means identifiability that can be achieved by any linear constraints,
which differs from statistical estimability defined for APC models by Kupper et al.
(1985).
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straint on the parameter vector that was established algebraically by Kup-
per et al. (1985) is, in the notation defined above, that , whereTl B p 00

lT is a constraint vector (of appropriate dimension) that defines a linear
function lTb of b. Note that since the IE imposes the constraint that

(i.e., that the arbitrary vector B0 have zero influence), Ts p 0 l p (I �
for the IE. Since , it follows thatT T TB B ) B B p 1 l B p (I �0 0 0 0 0

; the Kupper et al. conditionT TB B )B p B � B B B p B � B p 00 0 0 0 0 0 0 0 0

holds for the IE. Note also that the Kupper et al. condition implies that
any constrained estimator that is obtained by imposing an equality con-
straint on the parameter vector b and that contains any nonzero com-
ponent due to the vector B0 defined by the design matrix is not estimable;
it produces biased estimates of the A, P, and C effect coefficients.

Because the IE B satisfies the estimability condition for APC models,
it follows that, for a fixed number of time periods of data, the IE B is an
unbiased estimator of the special parameterization (or linear function) b0

of b defined in equation (12).7 Thus, a first statistical property of the IE
in the context of an APC analysis of demographic rates with a fixed
number of time periods of data is that it produces unbiased estimates of
the regression coefficients of the projected coefficient vector b0. Second,
we have also shown (Yang et al. 2004, p. 108) that, for a fixed number
of time periods of data, the IE is more statistically efficient (has a smaller
variance) than any CGLIM estimator that is obtained from a nontrivial
equality constraint on the unconstrained regression coefficient estimator b—
that is, any equality constraint that does not produce a projection of b
onto b0.

In brief, the IE has nice finite-time-period properties. In addition to
finite-time-period properties, the asymptotic properties of APC estimators
as the number of time periods p of data increase have been studied by
Fu, Hall, and Rohan (2004), Fu and Hall (2006), and Fu (2008). These
properties derive largely from the fact that the eigenvector B0 converges
elementwise to zero with increasing numbers of time periods of data. The
vector can converge elementwise to zero even though its length is fixed
at 1 because the number of elements of the vector grows as we add time
periods. Therefore, for any two estimators andˆ ˆb p B � s B b p B �1 1 0 2

, where s1 and s2 are nonzero and correspond to different identifyings B2 0

constraints placed on model (5), as the number of time periods in an APC
analysis increases, the difference between these two estimators decreases
toward zero, and, in fact, the estimators converge toward the IE B. Suffice
it to say that the proof proceeds by demonstrating that the coordinates
of B0 are bounded by a quantity that is a function of the number of age
groups and periods and this function converges to zero as . Underp r �

7 In our earlier work (Yang et al. 2004, p. 107), we also proved this property directly.



American Journal of Sociology

1710

suitable regularity conditions on the error term process and a fixed set of
age categories with effect coefficients, this feature of B0 yields a conver-
gence of the IE asymptotically to these “true” effect coefficients. In ad-
dition, Fu and Hall (2006) argue that as the number of time periods of
data increases, there are definite bounds on the differences between the
effect coefficients estimated by the IE and the effect coefficients of the
true period and cohort processes. A corollary is that CGLIM estimators

with nonzero s in equation (8) of the parameter vector in model (5) areb̂
biased in finite-time-period APC analyses. Except under certain conditions
specified by Fu, Hall, and Rohan (2004), this bias decreases as the number
of time periods in the analysis increases, in which case the CGLIM es-
timators may converge to the IE estimator.

Remark 1.—These statistical properties are not trivial and merit com-
ment. Both the intrinsic estimator B and any other estimator b̂ p B �

with obtained from an equality constraint are asymptoticallysB s ( 00

consistent as the number of time periods of data increases without bound.
Therefore, with a large number of periods of data (e.g., 30 or 40), differ-
ences among estimators decline, and it makes little difference which iden-
tifying constraint is employed. In most empirical APC analyses, however,
there usually are a small number of time periods of observations (e.g., 4
or 5) available for analysis. In these cases, the differences can be
substantial.

Remark 2.—As just noted, the IE, by its very definition and construc-
tion, satisfies the estimability condition. Other estimators using theoreti-
cally derived equality constraints on the parameter vector b may satisfy
this condition either exactly or statistically (in a sense defined below). If
other estimators do indeed satisfy the estimability condition, then they
also produce unbiased estimates of the A, P, and C effect coefficients. If
not, then the estimates they produce are biased.

Remark 3.—These properties provide a means for differentiating among
estimators. That is, for tables of rates with a finite number of time periods
of data, especially a small number (e.g., 4 or 5), an unbiased estimator
should be preferred to a biased estimator, as the latter can be misleading
with respect to the estimated trends across the age, time period, and cohort
categories.

Remark 4.—In contrast, as has been noted many times over the years
in discussions of the APC accounting model (see, e.g., Pullum 1978, 1980;
Rodgers 1982a, 1982b; Smith, Mason, and Fienberg 1982), different just-
identified models will generate the same data and yield exactly the same
model fit. In particular, linear transformations of the estimated A, P, and
C coefficients obtained by the IE (i.e., linear transformations of the ele-
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ments of the B vector) will fit the observed data just as well as the IE.8

If, however, such a linear transformation of the A, P, and C coefficients
(or any subset thereof) results in coefficients that depart sufficiently far
from the coefficients in B that they contain a significant component of
the B0 vector (i.e., a significantly nonzero s coefficient), then the resulting
transformed vector will not be estimable—that is, it will not be unbiased.9

Thus, even though the transformed coefficients will reproduce the data
just as well as those obtained by the IE, they will be biased and will give
poor indications of the patterns of change across the age, period, and
cohort categories used in the analysis. Therefore, goodness of fit to the
data (as measured, e.g., by log-likelihood functions or deviance statistics)
cannot be used as a criterion for selecting among estimators. But estim-
ability can be used for this purpose.

Remark 5.—Because of its estimability and unbiasedness properties, the
IE may provide a means of accumulating reliable estimates of the trends
of coefficients across the categories of the APC accounting model. To see
the intuitive logic of this statement, recall, for example, the distinction in
classical mechanics between the steady-state and general solutions to the
ordinary differential equation for Hooke’s law on the motion of a dis-
placed spring-mass system subject to an additional forcing motion. This
law has the algebraic form , where F denotes accel-F p �kx � a cos (qt)
eration (second derivative of the motion with respect to time) of the mass,
x denotes the distance of displacement, k is a constant unique to the
particular spring under study, and is the forcing term (see, e.g.,a cos (qt)
Marion and Thornton 1995, p. 125). If the mass is displaced by, say, a
distance of two feet, it will oscillate back and forth with some influence
of the length of the initial displacement, but it eventually will settle down
to a characteristic pattern of oscillations that depends only on the driving
force. By comparison, if the initial displacement of the mass is a distance
of four feet, then the mass will display an initial set of larger oscillations
that are different from the pattern observed for the two-foot displacement.
But after an initial series of oscillations, the driving force will cause the
mass to settle into the same set of oscillations as those found after a two-
foot displacement. Mathematically, the pattern of oscillations observed
after the effect of the initial length of displacements has worn off are
termed the steady-state solution of the Hooke’s law differential equation,

8 Geometrically, a linear transformation of the coefficient vector corresponds to a ro-
tation of the vector in parameter space. Such a rotation will produce distorted and
misleading indications of patterns of change across the age, period, and cohort cate-
gories used in the analysis.
9 This point is illustrated in our empirical analyses and is the basis of the statistical
test for estimability derived below.
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whereas the general solution of the equation consists of the steady-state
solution plus a factor that takes into account the initial conditions or
displacement of the spring. Because initial conditions can vary from ap-
plication to application, the general solution of the differential equation
can be unique to the application. On the other hand, the steady-state
aspect of the solution is invariant and generalizable to the motion of the
system regardless of the initial conditions.

Analogously, the IE is essentially a steady-state solution to the APC
accounting model estimation problem that factors out the initial conditions
of the dimension of the matrix of observed data—namely, the number of
age and time period categories that define the design matrix. Because the
IE does not allow these “initial conditions” to influence the estimates it
produces of the A, P, and C effect coefficients, they will be more invariant
to changes in the design matrix, such as additional time period data, than
estimates produced by estimators that incorporate such influences. In this
sense, the IE removes the aspect of the subjectivity in the estimator that
is due to the shape of the data. We will illustrate this feature of the IE
below in our model validation analyses.

Validation: An Empirical Example

In brief, the IE has some valuable properties as a statistical estimator.
But, given the long history of problems and pitfalls in proposed methods
of APC analysis, it is reasonable to question whether this estimator gives
numerical estimates of age, period, and effect coefficients that are valid—
that reveal the true effects. This is a question of model validation: does
the identifying constraint imposed by the IE, the projection of the un-
constrained APC accounting model vector b onto the non-null space of
the design matrix X, as in equation (12), produce estimated coefficients
that meaningfully capture the true age, time period, and cohort trends?

One approach to the question of validity is to compare results from an
APC analysis of empirical data by application of the IE with results from
an analysis of the same empirical data by application of another approach,
with a different family of models that do not use the identifying constraint
of the IE or CGLIM estimators for the accounting model. As an instance
of such an empirical comparison, we next describe analyses of verbal test-
score data from 15 cross-sections of the General Social Survey (GSS) from
1974 to 2000.10 This is an extension of GSS verbal test data for 1974–96;
a series of articles on these data in 1999 (see n. 11 below) posed and
disputed the existence of an intercohort decline in verbal vocabulary.

10 The survey years in which verbal ability was tested are 1974, 1976, 1978, 1982, 1984,
1987–90, 1991, 1993, 1994, 1996, 1998, and 2000.
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In the GSS tests, a survey respondent’s vocabulary knowledge is mea-
sured by a composite scale score called WORDSUM, which is constructed
by adding the correct answers to 10 verbal test questions and which ranges
from 0 to 10. WORDSUM has a distribution that is approximately bell
shaped, which has a mean of about 6 and is reported in previous studies
to have an internal reliability of .71 (Wilson and Gove 1999a, p. 258;
1999b).11 The data include 19,500 respondents who had WORDSUM
scores and other covariate measures across all survey years. Respondents’
ages in the data pooled across all surveys range from 18 to 89. The average
amount of education completed is 12.7 years. Fifty-seven percent of re-
spondents are female, and 15% are black. There are 19 five-year birth
cohorts. The oldest cohort member was born in 1890, and the youngest
was born in 1980.

We apply the IE to data on verbal test scores grouped into five-year
age groups and time periods, shown in table 2. In this age-by-period array,
there are 12 five-year age groups from ages 20 to 75�,12 five five-year
period groups from 1976 to 2000, and cohorts born from12 � 5 � 1 p 16
1901 to 1976.13 This yields 60 degrees of freedom. The event/exposure
rates (sample mean proportions) of correct answers to GSS vocabulary
questions can be transformed by a log link and modeled by a log-linear
regression for which the IE can be obtained. The events are the total
number of correct answers for every age and period group and are cal-
culated by multiplying the mean verbal scores by the number of individ-
uals. These are nonnegative counts and can be considered to be distributed
as Poisson variates. The population exposure is calculated as the product
of the number of people in each cell and the total number of possible
correct answers (10). Vocabulary knowledge test scores are not available
for every year from 1974 to 2000. For the missing years, we interpolated
the mean verbal scores and the numbers of individuals at risk based on
the data of neighboring years.

11 In an item analysis of individual words in WORDSUM, Alwin (1991, p. 628) found
that some of the words have become more difficult over time. The general conclusion
in the series of articles on the GSS verbal test data (Alwin and McCammon 1999;
Glenn 1999; Wilson and Gove 1999a, 1999b), however, is that word obsolescence does
not account for observed changes in the test scores over time.
12 We excluded ages 18–19 to obtain age groups of equal interval length so that the
diagonal elements of the age-by-period matrix refer to cohort members. The results
are not influenced by omitting this cell of small sample size. Ages 75–89 are grouped
into the 75� category in order to combine small population exposures for more stable
estimates.
13 The definition of the width of the time intervals used to define birth cohorts in APC
analyses is somewhat arbitrary. For consistency with extant articles on trends in GSS
vocabulary knowledge data, we use five-year birth cohorts.
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TABLE 2
Verbal Test Correct Answer Rates: GSS 1976–2000

Age Group 1976–80 1981–85 1986–90 1991–95 1996–2000

20–24 . . . . . .554 (8,203) .531 (8,489) .526 (5,553) .548 (4,950) .555 (5,045)
25–29 . . . . . .596 (9,671) .554 (10,653) .577 (6,946) .589 (6,480) .575 (6,780)
30–34 . . . . . .630 (8,643) .634 (8,718) .588 (7,096) .613 (7,745) .596 (7,740)
35–39 . . . . . .625 (6,776) .643 (7,946) .632 (6,799) .634 (7,960) .622 (8,400)
40–44 . . . . . .622 (5,619) .633 (5,996) .642 (5,548) .652 (6,940) .629 (8,355)
45–49 . . . . . .609 (4,595) .603 (5,112) .617 (4,734) .675 (5,915) .653 (6,775)
50–54 . . . . . .617 (5,454) .597 (4,560) .594 (3,314) .617 (4,770) .661 (5,885)
55–59 . . . . . .630 (5,439) .594 (5,335) .589 (3,207) .623 (3,590) .676 (4,225)
60–64 . . . . . .625 (4,915) .596 (4,830) .561 (3,319) .610 (3,430) .604 (3,700)
65–69 . . . . . .605 (4,010) .576 (498) .575 (3,633) .648 (3,000) .596 (2,985)
70–74 . . . . . .523 (3,420) .571 (3,333) .610 (2,789) .587 (3,305) .607 (3,540)
75� . . . . . . . .549 (4,394) .532 (4,264) .538 (3,584) .573 (4,890) .563 (4,970)

Note.—Numbers in parentheses indicate exposure.

Figure 2 shows the results from application of the IE to the data in
table 2. Estimated coefficients and their 95% confidence intervals are
plotted for successive categories within the age, period, and cohort clas-
sifications. Since they indicate changes in correct answer rates from one
age group, time period, or cohort to the next, the estimated coefficients
represent the temporal trends of vocabulary knowledge along each of
these three dimensions, net of the effects of the other two. The age effect
coefficients display a concave pattern. This corroborates the quadratic
age effect found by Wilson and Gove (1999a, 1999b): low at youth, rising
to a peak in the forties, staying largely flat until the midfifties, and de-
clining gradually into late life. The period effects curve is fairly flat for
the first 10 years, from the mid-1970s to the mid-1980s, but this is followed
by a jump into the mid-1990s, which flattens out again until 2000. The
slightly zigzag shape of the period curve shows some variation in vocab-
ulary knowledge over time for the past 30 years. This is quite revealing,
given the absence of direct estimates of period effects in the previous
studies. The cohort effects are more complicated and are characterized
by a bimodal curve, with the peaks occurring for cohorts born in 1911–
16 and 1941–46. The intercohort declines, as Glenn (1994, 1999) and Alwin
(1991; see also Alwin and McCammon 1999) insist, are evident for cohorts
between and after these periods—that is, among the post–World War I
and post–World War II cohorts. But there are also increases in vocabulary
knowledge for cohorts born before World War I and for the 1930–50
cohorts. These graphical results give us an overview of the average APC
trends that help to inform and specify models for additional APC analyses
using individual-level data.
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The GSS data on verbal test scores were also analyzed (Yang 2006;
Yang and Land 2006) using a very different approach to APC analysis—
namely, a hierarchical age-period-cohort (HAPC) analysis in the form of
a cross-classified random-effects regression model. This approach pro-
ceeds by building a level-1 fixed-effects regression model at the individual
level of analysis and then a random-effects model for cohort and time
period effects at level 2. The resulting analysis takes full advantage of
the existence of individual-level data on all respondents to the GSS, while
at the same time nesting these within the time periods and cohorts to
which they correspond. The mixed-effects model does not require the
assumption of additive and fixed age, period, and cohort effects used by
the conventional linear regression models that cause the identification
problem. The resulting estimates of cohort and period effect coefficients
estimated in this hierarchical regression models approach are average
residual effects of the cohort and period across all time periods and co-
horts, respectively, and are not constrained in any way to conform to the
IE or any other identifying constraint required by the account model.

The results of the HAPC analysis are shown in figure 3, which is
reproduced from Yang’s (2006) Bayesian estimates of the HAPC model.
While the coefficient metrics and time scales for the age and period effects
in figure 3 are in single years rather than the five-year groups of those
from the IE analysis in figure 2, the trends of estimated effect coefficients
are quite similar across the graphs. That is, both figure 2 and figure 3
exhibit age-effect curves that are quadratic and period-effect curves that
show a slight decline from the 1970s into the 1980s and then a slight rise
into the 1990s. And the cohort-effect curves are quite similar, showing
peaks in the early and mid 20th century, followed by declines.

In brief, this comparison shows that the independent estimates from a
hierarchical models analysis corroborate the estimated patterns of change
across age, period, and cohort categories that are obtained by imposing
the identifying assumption of IE analysis. Of course, this is only one
example of comparative analysis, and additional empirical studies are
needed before it can be concluded that the IE produces substantively
meaningful and empirically valid results under various circumstances.
Any statistical model has its limitations and surely will break down under
some circumstances. The identification of these limits for the IE is a topic
that merits additional research.

Validation: Simulation Results

Following good statistical practice, we now consider another approach to
model validation: simulation analyses. It is well known that, given any
age-by-period array of rates, it is impossible to know what true effects
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generated the data, because any number of just-identified constrained
models fit the data equally well. It is therefore important that we apply
an estimator such as the IE or CGLIM to artificial data for which we
know the true form of the underlying model. We present here the results
of some Monte Carlo simulation analyses to determine whether IE and
CGLIM estimators recover the true parameters.

We first investigate whether the IE is unbiased in finite samples. The
asymptotic properties of the IE apply as the number of periods in the
data set goes to infinity. Any data set used in practice has only a finite
number of periods. We explore whether the asymptotic results give good
approximations of the behavior of the IE in finite samples by simulating
data sets with five and 50 periods. The basic asymptotic result we expect
is that as the number of periods increases, estimated age effects should
converge to the true age effects when using the IE but not necessarily
when using other estimators.14

We fix the number of ages in all of our simulations at 9 without loss
of generality. For a given number of periods P, we generate 1,000 data
sets by Monte Carlo simulation in which the entries in the outcomeP # 9
matrix are distributed according to the equation

2y ∼ Poisson exp [0.3 � 0.1(age � 5) � 0.1 sin (period ){ij ij ij

� 0.1 cos (cohort ) � 0.1 sin (10 7 cohort )] .}ij ij

This equation for the data-generating process tells us what the true age,
period, and cohort effects are.

Age effect at age a 2.1 (a � 5)
Period effect in period p .1 sin (p)
Cohort effect in cohort c .1 cos (c) � .1 sin (10c)

We subtract constants from the above values so that the true effects are
normalized to have mean 0 in each category according to equation (4),
where the constants can be calculated as the mean effects for each category
(see n. 15 below). We then estimate age, period, and cohort effects in each
simulated data set using the IE and three different CGLIM estimators:
one with the first two age effects constrained to be equal (CGLIM_a), one
with the first two period effects constrained to be equal (CGLIM_p), and
one with the first two cohort effects constrained to be equal (CGLIM_c).

14 Regardless of the estimator used, estimated period and cohort effects cannot be
expected to converge to their true values as the number of periods increases, because
adding a period to the data set does not add information about the previous periods
or about cohorts not present in the period just added.
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TABLE 3
Simulation Results of the IE and CGLIM Estimators: Age Effects ( )N p 1,000

True
Value

IE
CGLIM_a
( )A1 p A2

CGLIM_p
( )P1 p P2

CGLIM_c
( )C1 p C2

p p 5 p p 50 p p 5 p p 50 p p 5 p p 50 p p 5 p p 50

1 Mean .933 .924 .942 �1.903 �1.876 1.214 1.078 1.714 1.211
SD .276 .060 1.265 .348 1.366 1.308 5.294 2.965
MSE .076 .004 9.646 8.011 1.942 1.730 28.609 8.862

2 Mean .233 .217 .238 �1.903 �1.876 .435 .340 .810 .440
SD .280 .077 1.265 .348 1.041 .983 3.967 2.223
MSE .079 .006 6.164 4.569 1.123 .977 16.053 4.980

3 Mean �.267 �.303 �.267 �1.717 �1.676 �.158 �.199 .092 �.132
SD .343 .094 .798 .209 .742 .653 2.665 1.486
MSE .119 .009 2.740 2.028 .562 .431 7.221 2.223

4 Mean �.567 �.629 �.574 �1.335 �1.279 �.556 �.540 �.431 �.507
SD .401 .112 .536 .146 .526 .351 1.384 .751
MSE .165 .013 .878 .528 .276 .124 1.932 .567

5 Mean �.667 �.721 �.674 �.721 �.674 �.721 �.674 �.721 �.674
SD .428 .121 .428 .121 .428 .121 .428 .121
MSE .186 .015 .186 .015 .186 .015 .186 .015

6 Mean �.567 �.599 �.576 .108 .128 �.671 �.610 �.796 �.644
SD .397 .106 .518 .141 .514 .343 1.387 .749
MSE .158 .011 .723 .503 .275 .119 1.974 .566

7 Mean �.267 �.240 �.266 1.173 1.143 �.386 �.334 �.636 �.401
SD .337 .097 .813 .218 .758 .661 2.660 1.484
MSE .114 .009 2.733 2.034 .588 .440 7.203 2.217

8 Mean .233 .304 .237 2.424 2.350 .086 .135 �.289 .035
SD .288 .077 1.114 .295 1.076 .981 3.997 2.226
MSE .088 .006 6.039 4.569 1.177 .971 16.233 4.989

9 Mean .933 1.048 .940 3.875 3.758 .757 .804 .257 .671
SD .268 .060 1.437 .390 1.366 1.304 5.272 2.962
MSE .085 .004 10.716 8.132 1.894 1.716 28.221 8.835

To make the CGLIM results comparable to the IE results, we renormalize,
using procedures described in the next section of the article, each set of
age, period, and cohort effects to sum to zero for both the CGLIM esti-
mators and the IE.

Table 3 reports the results for age effects. For each age effect in the
model, we show the true value and, for each estimator, the mean, standard
deviation, and mean squared error (MSE) of the estimated effect across
1,000 simulations. By comparing the mean of the simulated estimates to
the true values, we can see whether each estimator is unbiased. The
standard deviation of the simulated estimates shows how much the es-
timated parameters vary from sample to sample. The MSE is the average
squared difference between the estimated parameter and the true value;
this measure of accuracy takes account of both bias and variance.
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Three of the four estimators recover the qualitative U-shaped profile
of the age effects. The CGLIM estimator that constrains the first two age
effects to be equal fails to recover even the qualitative form of the age
effects, because the constraint is far from correct: the first two true age
effects are not nearly equal. However, even the CGLIM estimators that
recover the qualitative shape of the age effects are far off the mark in
quantitative terms; only for the IE is the mean of each estimated age
effect close to the true value. The IE also exhibits substantially less sam-
pling variation than the CGLIM estimators and has much lower MSE.
The IE performs better than the CGLIM whether we use five or 50 periods
of data.

Because the numbers of period and cohort effects in our samples are
large, we report our results for these effects graphically in figure 4 for the
simulations with five time periods of data. The figure shows the mean of
the simulated estimates and the MSE for each coefficient and each esti-
mator. Again, the mean for the IE is close to the true value, while the
CGLIM estimators are not close, and the MSE is much smaller for the
IE than for the CGLIM. It is noteworthy that the cohort effects are
particularly poorly estimated by the CGLIM models.

We also investigated how well the estimators perform when there are
no true period or cohort effects. Figure 5 shows results from simulations
in which the age and period effects were as described above but the cohort
effects were all zero. Only CGLIM_p estimates are shown among all
CGLIM estimates because they are the closest to the true effects. On
average, the IE correctly estimates that there are no cohort effects in the
data. The CGLIM estimators incorrectly find cohort effects that are dif-
ferent from zero and change substantially across birth cohorts. Results
were similar when we set all of the period effects to zero in the data: only
the IE detected that no period effects were truly present.

In simulations not reported here, we found similar results for data sets
with 10 and 20 periods of data.15 The simulations thus show that, re-
gardless of the sample size, the IE is more accurate than the CGLIM.
The IE performs well even in data sets with just five periods, perhaps
the smallest sample size that might be used in practice. By contrast, the
CGLIM estimators give incorrect results even when there are as many
as 50 periods, which would be an unusually large sample in many de-
mographic applications.

15 Due to space constraints, only a limited set of simulation results are reported here.
Additional results, including analyses of other models in the GLM family and formal
tests for unbiasedness will be reported in subsequent work.
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Fig. 5.—Simulation results of the IE and CGLIM estimators; true cohort effect p 0

INTERPRETATION AND USE OF THE IE

Empirical Applications, Interpretation of Model Parameters, and
Hypothesis Testing

Given the desirable properties of the IE as a statistical estimator and its
evident ability to produce valid estimates of age, period, and cohort effect
coefficients, the question becomes one of how to interpret and use this
estimator. The question of interpretation arises because the identifying
constraint imposed by the IE on the unidentified APC accounting model
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parameter vector b—namely, projection onto the non-null (column) space
of the design matrix X—appears to be a constraint purely of algebraic
convenience, devoid of substantive meaning. By contrast, conventional
equality-constrained estimators of APC accounting models often are mo-
tivated by substantive hypotheses derived from theory or prior studies
that indicate that certain coefficients are, say, of the same magnitude and
hence can be constrained to be equal. As noted earlier, however, if the
equality constraints are not in fact valid, the constraints result in a no-
nestimable function of b and produce CGLIM estimates of APC effect
coefficients that may be wildly off the mark.

To focus the discussion, in table 4 we present the effect coefficient
estimates for the mortality data for U.S. females, 1960–99, given in table
1. The first two columns of table 4 report the coefficient estimates and
standard errors produced by applying the IE to these data. The next two
columns report the corresponding estimates for a CGLIM model, which
(for reasons that will be made clear below) we label CGLIM 3, wherein
the coefficients for the respective first categories of the age, period, and
cohort groups are taken as the reference categories and have effects set
to zero, and the identifying constraint is that the second birth cohort (C2),
1870–74, is constrained to have the same effect coefficient (zero) as the
first cohort (C1), 1865–69. The note below table 4 gives the overall model
fit statistics, which are the same for all models. Earlier we noted (in remark
4) that all just-identified models that incorporate effect coefficients for the
full array of age, period, and cohort categories will fit the data equally
well. This is evident in table 4. Thus, to reiterate the point made earlier,
one cannot use fit statistics to discriminate among just-identified models.
Rather, some other criterion must be employed. The criterion applied in
this article is that the constrained vector must be estimable.

The numerical estimates in table 4 show that the constraint imposed
in the CGLIM 3 model (in which the effect of the 1865 cohort is con-
strained to equal that of the 1870 cohort) is statistically valid (i.e., within
sampling variability) for these data: the estimated effect for the 1865–69
cohort in the IE column is .939 (SE p .060) and the effect for the 1870–
74 cohort is .937 (SE p .031). The difference between these two effect
coefficient estimates, .002, is well within sampling error and is therefore
effectively zero. In other words, this equality constraint produces an es-
timable function in a statistical sense (to be made precise below). The
consequence is that the coefficient vectors for these two models are sta-
tistically identical up to a centering or normalizing transformation. This
equivalence is demonstrated numerically in the last column of table 4,
which gives the numerical values of the corresponding recentered/renor-
malized CGLIM 3 effect coefficients (i.e., the CGLIM 3 age, period, and
cohort coefficients transformed by subtracting their respective group
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means so that the transformed coefficients sum to zero).16 The resulting
recentered CGLIM 3 and IE effect coefficients generally agree up to two
or three digits. Again, this equivalence is due to the fact that the equality
constraint imposed in the CGLIM 3 model is statistically valid for this
data set. The equivalence is illustrated in figure 6, which shows graphs
of the values of the age, period, and cohort effect coefficients for the
CGLIM 3 and IE models. The patterns of the respective groups of effects
are virtually identical.

Other possible identifying assumptions do not fare as well. To illustrate
this, table 4 reports comparable effect coefficient estimates for two alter-
native CGLIM models: CGLIM 1, which identifies the model by con-
straining the effect coefficient for the 25–29 age group (A2) to be the same
as that of the 20–24 age group (A1); and CGLIM 2, which achieves
identification by constraining the effect coefficient for the 1965–69 time
period (P2) to equal that for the 1960–64 period (P1). Figure 7 shows
graphs of the respective sets of effect coefficients for these two CGLIM
models, and, for comparison, shows the corresponding effect coefficients
of CGLIM 3, which imposes the constraint C1 p C2, as reported above.
For all three sets of effect coefficients, it can be seen that those produced
by the CGLIM 1 and CGLIM 2 models bracket those produced by the
CGLIM 3 model—that is, the two alternative CGLIM models yield effect
coefficients that diverge substantially from those given by the CGLIM 3
model. The divergences are substantial for the age and cohort effects and
dramatic for the period effects. The reason for this behavior is that the
equality constraints used to produce the CGLIM 1 and CGLIM 2 models
do not produce statistically estimable functions and corresponding coef-
ficient estimates.

To proceed more systematically, a procedure is needed for assessing
whether two estimated coefficient vectors are within sampling error of
being equal. There are several ways to accomplish this. For instance,
centered CGLIM effect coefficients could be compared element by element
with the corresponding estimated IE effect coefficients in the first column

16 CGLIM coefficients can be subjected to such a normalizing transformation through
the following procedures: Under the original CGLIM normalization, let ai be the
estimated age effect for age i, let pj be the estimated period effect for period j, and let
ck be the estimated cohort effect for cohort k. Let d be the estimated intercept. Trans-
forming these estimates to a different normalization means that we want to find new
coefficients ai’, pj’, ck’, and d’ such that (1) the predicted value for each data point
does not change and (2) the age, period, and cohort effects each sum to zero. The
solution is to subtract the mean of the original age effects from each ai to obtain a
new age effect, ai’—this guarantees that the new age effects sum to zero—but then to
add the mean of the original age effects to the intercept, to guarantee that the predicted
values do not change. The same process can be used to transform the period and
cohort effects.
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Fig. 6.—Comparison of graphs of age, period, and cohort effect coefficients: CGLIM 3
and IE models.

to determine whether the former are within, say, two standard errors of
the latter. Using the standard errors of the IE coefficients, it can be seen
that all of the centered effect coefficients for the CGLIM 3 model are
within two standard errors of the IE coefficients. By comparison, this is
not the case for the centered effect coefficients of the CGLIM 1 and
CGLIM 2 models. This confirms the inference stated above, based on
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visual inspection of figures 6 and 7—namely, that the CGLIM 3 model
produces estimates of age, period, and cohort effects that are quite con-
sistent with those estimated by the IE and thus is a statistically estimable
function, whereas the CGLIM 1 and CGLIM 2 models are not.

An alternative procedure is to define a test statistic based on the entire
vector of coefficients. To do so, we state the null hypothesis:

TˆH : E(bB ) p (B � sB ) B p s p 0.T. (15)0 0 0 0

In words, the null hypothesis is that the expected value of the product
of the estimated and renormalized CGLIM vector and the eigenvectorb̂

that is fixed by the design matrix is zero. Because of the orthogonalityB0

of the vectors B and B0, this, as equation (15) indicates, is equivalent to
the hypothesis that the expected value of the scalar s is equal to zero.
Using the geometric projection illustrated in figure 1, applying this test
is equivalent to testing whether the estimated parameter vector under a
given set of constraints (b1 or b2 or b3) lies significantly far away from the
estimable function, b0, so that one can infer that its horizontal projection
results from a nonzero s.

To specify a test for this null hypothesis, we build upon a well-known
asymptotic distribution property of the maximum likelihood estimator
(MLE) used to estimate : under broad regularity conditions, as sampleb̂
size or the number of time periods of data increases, the MLE of isb̂
consistent and asymptotically normally distributed (McCulloch and Searle
2001, p. 306). This property facilitates the definition of an asymptotic t-
test for the null hypothesis (15) as

s � 0 s
t p p , (16)

se(s) se(s)

where se(s) denotes the estimated (asymptotic) standard error of the scalar
s.17 Note that to obtain this test statistic, the numerator s can be computed,
as indicated in equation (15), by calculating the product of the vectors

and B0. Then the denominator can be computed by transforming theb̂
asymptotic variance-covariance matrix (i.e., the inverse of the Fisher�1Ŝ

information matrix) that is obtained in the process of estimating b by
maximum likelihood to obtain . Because the vector B0 is orthogonal tob̂
the design matrix (see eq. [9] above), the variance of the scalar s can be

17 This asymptotic t-test is based on asymptotic normality properties of the maximum
likelihood estimator, which assume large numbers of degrees of freedom—i.e., large
APC matrices. A systematic study of the statistical power of the test for small to
moderate-sized matrices is beyond the scope of the present article. Even without this,
the test can provide useful information for assessing the plausibility of constraints
based on theory or side information from other studies and for comparing alternative
constraints, as illustrated here.
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computed by imposition of the usual quadratic form transformation ap-
plied to obtain the variance of the restricted maximum-likelihood esti-
mator from the MLE, namely .18 Taking the square root of thisT �1ˆB S B0 0

transformation yields an estimate of the standard deviation of s p
, which, when divided by the degrees of freedom of the model,b̂ B T0

, produces an estimate ofdf p ap � (1 � [a � 1] � [p � 1] � [a � p � 2])
the standard error of s in the denominator of equation (16).

Applied to the three alternative CGLIM models for which the renor-
malized coefficients are given in table 4, we obtain the following t-ratios:
0.742 ( ) for CGLIM 1, �4.822 ( ) for CGLIM 2, andP p .458 P ! .001
�0.076 ( ) for CGLIM 3. The results show that the CGLIM 1P p .939
and CGLIM 3 models estimates are not statistically different from those
of the IE, but the CGLIM 2 model estimates are. Because the degrees of
freedom of the APC models are small, it may be appropriate to use a P
value larger than the conventional value of .05 for assessing the t-ratios.
In this sense, the CGLIM 1 model, with a P value of .5, deviates from
the IE model more than the CGLIM 3 model, which has a P value of .9,
although both models clearly are acceptable by the conventional .05 cri-
terion. From a substantive point of view, the equality constraint used by
the CGLIM 1 model—that the effects be equal for ages 20–24 and 25–
29—is consistent with the demographic evidence from life table studies
that the mortality risk is generally low and roughly the same in the 20s.
Reiterating the point made in remark 4 above, the results of applying the
asymptotic t-test to the CGLIM 1, 2, and 3 models also show that esti-
mators that incorporate significant components of the B0 vector (and thus
the design matrix) may give misleading results concerning the patterns
of change of the estimated effect coefficients across the age, period, and
cohort categories. This is illustrated graphically in figure 7. The figure
shows that the patterns of changes of the coefficients for the CGLIM 1
and CGLIM 3 models, for which the foregoing asymptotic t-test is not
significant, are quite close to those of the IE and thus lead to similar
conclusions. On the other hand, those of the CGLIM 2 model, which has
an asymptotic t-ratio that indicates a statistically significant departure

18 Formally, the asymptotic normality property of the MLE yields ; i.e.,asy �1b̂ ∼ N(b, S )
the sampling distribution of the estimated coefficient vector of a model that is iden-
tified by imposition of a theoretically motivated equality constraint on two or more
coefficients is asymptotically multivariate normal with a mean (expected) parameter
vector b and a variance-covariance matrix S�1, where S�1 is estimated by , the�1Ŝ
inverse of the Fisher information matrix. By properties of the MLE (see, e.g.,
McCulloch and Searle 2001, p. 309), a linear transformation of using B0 then yieldsb̂

, where . From this, the asymptotic standard error ofasy T �1ˆ ˆbB ∼ N(0, B S B )T bB p sT0 0 0 0

s can be computed as the square root of divided by degrees of freedom, asT �1ˆB SB0 0

indicated in the text.
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from the IE coefficients, show patterns of change that depart substantially
from those of the IE.

To understand how not all constraints based on age effect coefficients
produce acceptable t-ratios, consider an alternative constraint on the co-
efficients of the two oldest age groups, a constraint that might be moti-
vated by recent studies of the deceleration of mortality at the oldest ages
(see, e.g., Vaupel 1997). To see how this different constraint compares to
the current CGLIM 1 model, we estimated a CGLIM 1B model con-
straining the last two age groups to be equal in coefficients (A15 p A16).
The estimates result in a large t-ratio of 23.9 ( ), suggesting thatP ! .001
this equality constraint does not produce an estimable function.

In brief, the foregoing test for statistical estimability leads to new av-
enues for using and interpreting the IE as applied to a particular data
set. On the one hand, an analyst can apply the IE in an exploratory data
analysis approach, in which the objective is to ascertain good estimates
of the patterns of age, period, and cohort effects in a table or set of tables
of demographic rates. In such an exercise, the analyst does not approach
the data with strong prior notions about particular patterns of effects that
should be evident, but rather seeks to let the patterns emerge from ap-
plication of the IE, taking advantage of the fact that the IE is an estimable
function and thus has desirable statistical properties.

On the other hand, using the definition of statistical estimability and
the test described above, an analyst can use the IE in a confirmatory data
analysis approach,19 in which a vector of effect coefficients estimated from
application of the IE is used as a benchmark to assess whether a corre-
sponding vector of coefficients estimated from the imposition of one or
more theoretically or substantively motivated constraints to achieve model
identification is acceptable. In this type of exercise, an analyst approaches
a table or tables of demographic rates with a definite hypothesis or set
of hypotheses about the underlying age, period, and cohort effects that
generated the data. The analyst can use the vector of effect coefficients
estimated by the IE to assess the empirical plausibility of the hypotheses.
In this way, the definition of statistical estimability and the test described
above directly address a criticism that often has been lodged against
general-purpose methods of APC analysis, namely, that they provide no
avenue for testing specific substantive hypotheses and thus are mere de-
vices of algebraic convenience that may be misleading.

19 The distinction between “exploratory” and “confirmatory” data analysis dates back
in statistics at least to the classic work of Mosteller and Tukey (1977).
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Computational Tools

Interested users may desire a computer program for conveniently applying
the IE to their data. To date, programs for estimating the IE have been
written as add-on files to two commercially available software packages,
S-Plus (Venables and Ripley 2000) and Stata (Rabe-Hesketh and Everitt
2004).

The S-Plus program can be obtained by writing to Wenjiang Fu
(fuw@epi.msu.edu) and requesting a copy. An add-on file for calculating
the IE in Stata may be obtained by typing ssc install apc on the Stata
command line on any computer connected to the Internet. It can also be
downloaded from the Statistical Software Components archive at http://
ideas.repec.org/s/boc/bocode.html. The program uses much the same syn-
tax as Stata’s glm command for generalized linear models. For example,
a user whose data set contains a dependent variable y, an exposure var-
iable x, an age variable a, and a period variable t can fit a Poisson model
with age, period, and cohort effects by typing

apc_ie y, exposure(x) family(poisson) link(log) age(a) period(t).

Stata will then display coefficient estimates, standard errors, confidence
intervals, the log-likelihood value, and a variety of other statistics. The
program is documented more fully in a help file that can be read by typing
help apc_ie in Stata after installation. The package also includes the com-
mand apc_cglim for calculating CGLIM estimators that impose equality
constraints on pairs of coefficients; for details, type help apc_cglim in Stata
after installation.

CONCLUSIONS

The problem of obtaining reliable estimates of the patterns of change
across age groups, time periods, and cohorts has long provided an in-
triguing challenge in many contexts in the social sciences, demography,
and epidemiology. To address this challenge, this article has examined a
number of properties and the performance of the intrinsic estimator for
the APC accounting model in the context of age-by-time-period tables of
rates. As noted above, Glenn (2005, p. 20) has stated several strong criteria
for judging the acceptability and utility of a general-purpose method of
APC analysis. The IE appears to satisfy these criteria. As shown here,
the IE has passed both empirical and simulation tests of validity and can
be used to test theoretically motivated hypotheses and to incorporate and
test side information from other studies. The IE therefore may provide



Intrinsic Estimator

1733

a useful tool for the accumulation of scientific knowledge about the distinct
effects of age, period, and cohort categories in social research.

Indeed, since the APC underidentification problem is an instance of a
larger family of such structural issues, the potential range of application
for the IE may be even larger. Structural underidentification problems
occur when a conceptualization of the effects of structural arrangements
leads to an exact linear dependency among the effects. An example is the
classical problem in mobility analysis of distinguishing the effects of
socioeconomic mobility or distance moved on an outcome variable from
the effects of origin and destination statuses (see, e.g, Duncan 1966). An-
other example pertains to the estimation of the effects of years of labor
force experience separate from the effects of current age and age at labor
force entry. These and similar problems of structural underidentification
occur frequently in sociology and related disciplines. The IE and/or al-
gebraic approaches similar to the IE may prove useful in applications to
such problems.

Is the IE then a complete solution to the structural identification prob-
lem in APC and similar models? No. Structural identification problems
are just that—points of underidentification of parameters resulting from
the very nature of the underlying models. There is not now and can never
be a complete resolution of such problems. But there can be variations
among approaches to these problems with respect to statistical properties.
Because of its desirable properties as a statistical estimator, including its
ability, demonstrated above, to produce good estimates of the underlying
patterns of change in the age, period, and cohort coefficients in the ac-
counting model with a small number of time periods of data, the IE adds
a potentially useful method to the toolkit available for these analyses.
Does this mean that researchers should naively apply this method to tables
of rates and expect to obtain meaningful results? Again, no. Every sta-
tistical model has its limits and will break down under some conditions.
APC analysis is well known to be treacherous, for reasons articulated by
Glenn (2005), and should, in all cases, be approached with great caution
and an awareness of its many pitfalls. Replications, in particular, are called
for when additional data become available.

Last but equally important, the limitations of the IE in theoretical and
empirical studies are related to the limitations of the APC accounting
model (Smith 2004). This model is based on the assumption of addivity
of age, period, and cohort effects that not only incurs the identification
problem but also may be a poor approximation of how social change
occurs. Additional new models and methods are needed for testing other
theories of social change. The recent development of hierarchical APC
models is useful for studying the contextual effects of cohort membership
and period events on a wide range of social processes (Yang 2006, 2008;
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Yang and Land 2006). Other conceptually appealing models, such as the
cohort inversion model and the continuously accumulating/evolving co-
hort effects model (Hobcraft et al. 1982), should also be explored and
more fully developed in future research.
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